Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(3): e0092023, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37098917

RESUMO

Staphylococcus aureus is a common pathogen that causes health care-related and community-associated infections. In this study, we provide a novel system that can recognize and kill S. aureus bacteria. The system is specifically based on a combination of the phage display library technique and yeast vacuoles. A phage clone displaying a peptide capable of specific binding to a whole S. aureus cell was selected from a 12-mer phage peptide library. The peptide sequence was SVPLNSWSIFPR. The selected phage's ability to bind specifically with S. aureus was confirmed using an enzyme-linked immunosorbent assay, and the chosen peptide was then synthesized. The results showed that the synthesized peptides displayed high affinity with S. aureus but low binding ability with other strains, including Gram-negative and Gram-positive bacteria such as Salmonella sp., Shigella spp., Escherichia coli, and Corynebacterium glutamicum. In addition, yeast vacuoles were used as a drug carrier by encapsulating daptomycin, a lipopeptide antibiotic used to treat Gram-positive bacterial infections. The expression of specific peptides at the encapsulated vacuole membrane created an efficient system that can specifically recognize and kill S. aureus bacteria. IMPORTANCE The phage display method was used to select peptides with high affinity and specificity for S. aureus, and these peptides were then induced to be expressed on the surface of yeast vacuoles. These surface-modified vacuoles can act as drug carriers, with drugs such as the lipopeptide antibiotic daptomycin loaded inside. An advantage of using yeast vacuoles as a drug carrier is that they can be easily produced through yeast culture, making the approach cost-effective and suitable for large-scale production and potential implementation in clinical settings. This novel approach offers a promising way to specifically target and eliminate S. aureus that could ultimately lead to improved treatment of bacterial infections and reduced risk of antibiotic resistance.


Assuntos
Daptomicina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Saccharomyces cerevisiae , Vacúolos , Peptídeos/farmacologia , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia
2.
Cureus ; 14(1): e21347, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35186603

RESUMO

Introduction Hepatocellular carcinoma (HCC) is one of the most common malignancies in the world. Early detection and accurate diagnosis of HCC play an important role in patient management. This study aimed to develop a convolutional neural network-based model to identify and segment HCC lesions utilizing dynamic contrast agent-enhanced computed tomography (CT). Methods This retrospective study used CT image sets of histopathology-confirmed hepatocellular carcinoma over three phases (arterial, venous, and delayed). The proposed convolutional neural network (CNN) segmentation method was based on the U-Net architecture and trained using the domain adaptation technique. The proposed method was evaluated using 115 liver masses of 110 patients (87 men and 23 women; mean age, 56.9 years ± 11.9 (SD); mean mass size, 6.0 cm ± 3.6). The sensitivity for identifying HCC of the model and Dice score for segmentation of liver masses between radiologists and the CNN model were calculated for the test set. Results The sensitivity for HCC identification of the model was 100%. The median Dice score for HCC segmenting between radiologists and the CNN model was 0.81 for the test set. Conclusion Deep learning with CNN had high performance in the identification and segmentation of HCC on dynamic CT.

3.
Environ Sci Pollut Res Int ; 29(12): 16959-16972, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34655380

RESUMO

Ammonium removal from drinking water to protect human and environmental health is one of the major global concerns. This study evaluates the performance of Purolite C100E, a commercial cation exchange resin, in eliminating ammonium in synthetic and real contaminated groundwater. The results demonstrate that the pH operation range of the resin for better ammonium removal is 3 to 8. Lower ammonium removal at low and high pH occurred due to competition from H+ and loss of ammonium as ammonia gas, respectively. Equilibrium data of ammonium removal fitted both the Langmuir and Freundlich isotherm models with the maximum Langmuir ion exchange capacities for initial ammonium concentrations of 10-200 mg/L and 50-2000 mg/L, reaching 18.37 mg/g and 40.16 mg/g, respectively. The presence of co-ions in the water reduced the ammonium removal efficiencies slightly (< 12%) in the order Mg2+ > Ca2+ > K+. The higher affinity of ammonium to adsorbent is due to its lower hydrated ionic radius and H-bonding. The maximum exchange capacity in the fluidized bed studies of the original Purolite C100E (bed height 27 cm, resin weight 75 g, initial ammonium concentration 17.4 mg/L, filtration velocity 0.5 m/h) was 10.48 mg/g. It progressively reduced slightly after three regeneration cycles to 8.79 mg/g. The column breakthrough data satisfactorily fitted the Thomas model. A household filter cartridge packed with 4 kg Purolite C100E (80 cm height) and operated at a filtration velocity of 1.9 m/h in Vietnam successfully reduced the initial 6 mg NH4+/L in groundwater (after sand filter pre-treatment) to well below the Vietnam drinking water standard (3 mg/L-QCVN 01:2009/BYT) continuously for 1 week, suggesting that such a filter can be adopted in rural areas to successfully remove ammonium from groundwater.


Assuntos
Compostos de Amônio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Adsorção , Humanos , Poluentes Químicos da Água/análise , Purificação da Água/métodos
4.
Enzyme Microb Technol ; 93-94: 44-50, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27702484

RESUMO

In this study, this protein was overexpressed in yeast cells grown on trehalose-containing medium to assess its impact on yeast vacuolar activity. ATH was confirmed to be located in both cell surface and vacuoles and the overexpression of ATH was observed to decrease vacuolar activity. Therefore, an assumption was suggested to explain this phenomenon as follows: when grown on containing trehalose medium, the ATH localization at cellular periplasm, but not the vacuole, is prioritized to utilize the extracellular trehalose for cell growth. The multivesicular body pathway (MVB pathway) via which ATH is transported into vacuoles is believed to be down-regulated to favor the accumulation of ATH at cell surface area. By extension, other vacuolar proteins travelling through MVB pathway to reach yeast vacuoles likely also suffer the down regulation. It can be concluded that acid trehalase may contribute down regulation of other vacuolar proteins through MVB pathway. This study suggests that it is a potential of acid trehalase (ATH) on impaired activity of yeast vacuolar.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Trealase/metabolismo , Vacúolos/metabolismo , Transporte Biológico Ativo , Membrana Celular/metabolismo , Genes Fúngicos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Trealase/genética , Trealose/metabolismo
5.
Mol Cell Biochem ; 414(1-2): 179-86, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26895320

RESUMO

Yeast GTP-binding protein (YPT1 protein) has been reported to function in the early stages of the secretory pathway. Particularly, YPT1 protein is observed to regulate both the endoplasmic reticulum-to-Golgi transport and the autophagy. Therefore, the YPT1 protein overexpressed in yeast vacuoles is expected to enhance antimicrobial and anticancer activity. The enhancement of yeast vacuolar activity under the overexpression of YPT1 was evaluated by the analysis of lysozyme activity, antimicrobial activity against Escherichia coli and Staphylococcus aureus, and MTT assay against HeLa cell lines. Additionally, the rise in concentration of some important proteinases inside the vacuole, such as proteinase A, proteinase B, and vacuolar carboxypeptidase Y (CPY) were also recorded using a 2DE technique. All results imply YPT1 involvement in the recruitment of some specific proteinases into vacuoles, which leads to the enhancement of vacuolar activity. Since these there proteinases belong to the CPY pathway, YPT1 is even believed to up-regulate this trafficking pathway in yeast cells. Future studies, however, should be carried out to discover the mechanisms that allow YPT1 to recruit these proteins into yeast vacuoles.


Assuntos
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Vacúolos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Proteínas Fúngicas/farmacologia , Células HeLa , Humanos , Microscopia Eletrônica de Varredura , Muramidase/metabolismo , Peptídeo Hidrolases/metabolismo , Recombinação Genética , Vacúolos/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...